Advertisements
Advertisements
Question
`x-1/x=3,x≠0`
Solution
The given equation is
`x-1/x=3,x≠0`
⇒`(x^2-1)/x=3`
⇒`x^2-1=3x`
⇒`x^2-3x-1=0`
This equation is of the form `ax^2+bx+c=0` where` a=1,b=-3 and c=-1`
∴ Discriminant, `D=b^2-4ac=(-3)^2-4xx1xx(-1)=9+4=13>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt13`
∴ `α=(-b+sqrt(D))/(2a)=(-(-3)+sqrt(13))/(2xx1)=(3+sqrt(13))/2`
β=`(-b+sqrt(D))/(2a)=(-(-3)+sqrt(13))/(2xx1)=(3+sqrt(13))/2=(3-sqrt(13))/2`
Hence, `(3+sqrt(13))/3` and `(3-sqrt(13))/3`are the roots of the given equation.
APPEARS IN
RELATED QUESTIONS
Write the discriminant of the following quadratic equations:
x2 + 2x + 4 = 0
Write the discriminant of the following quadratic equations:
x2 - x + 1 = 0
Write the discriminant of the following quadratic equations:
4x2 - 3kx + 1 = 0
Solve for x:
`1/x - 1/(x-2)=3`, x ≠ 0, 2
`16x^2+2ax+1`
`15x^2-28=x`
`sqrt3x^2+10x-8sqrt3=0`
`4x^2-4bx-(a^2-b^2)=0`
`a^2b^2x^2-(4b^4-3a^4)x-12a^2b^2=0,a≠0 and b≠ 0`
If a and b are real and a ≠ b then show that the roots of the equation
`(a-b)x^2+5(a+b)x-2(a-b)=0`are equal and unequal.