Advertisements
Advertisements
प्रश्न
The denominator of a fraction is 3 more than its numerator. The sum of the fraction and its reciprocal is `2 9/10` Find the fraction.
उत्तर
Let the numerator be x.
∴Denominator =`x+3`
∴ Original number =`x/(x+3)`
According to the question:
`x/(x+3)+1/(x/(x+3))=2 9/10`
⇒`x/(x+3)+(x+3)/x=29/10`
⇒`(x^2+(x+3)^2)/(x(x+3))=29/10`
⇒`(x^2+x^2+6x+9)/(x^2+3x)=29/10`
⇒`(2x^2+6x+9)/(x^2+3x)=29/10`
⇒`29x^2+87x=20x^2+60x+90`
⇒`9x^2+27x-90=0`
⇒`9(x^2+3x-10)=0`
⇒`x^2+3x-10=0`
⇒`x^2+5x-2x-10=0`
⇒`x(x+5)-2(x+5)=0`
⇒`(x-2)(x+5)=0`
⇒`x-2=0 or x+5=0`
⇒`x=2 or x=-5` (rejected)
So, number =` x = 2 `
denominator =`x+3=2+3=5`
So, required fraction =`2/5`
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
`sqrt3x^2+2sqrt2x-2sqrt3=0`
Write the discriminant of the following quadratic equations:
x2 - x + 1 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3a2x2 + 8abx + 4b2 = 0, a ≠ 0
`4sqrt3x^2+5x-2sqrt3=0`
`36x^2-12ax+(a^2-b^2)=0`
`x^2+6x-(a^2+2a-8)=0`
Find the nature of roots of the following quadratic equations:
`2x^2-8x+5=0`
`5x^2-4x+1=0`
Find the values of k for which the given quadratic equation has real and distinct roots:
`x^2-kx+9=0`
If the quadratic equation x2 + 4x + k = 0 has real and equal roots, then ______.