मराठी

A Two-digit Number is Such that the Product of Its Digits is 14. If 45 is Added to the Number, The Digit Interchange Their Places. Find the Number. - Mathematics

Advertisements
Advertisements

प्रश्न

A two-digit number is such that the product of its digits is 14. If 45 is added to the number, the digit interchange their places. Find the number. 

 

उत्तर

Let the digits at units and tens places be x and y, respectively. 

∴` xy=14` 

⇒`y=14/x`                      ...............(1) 

According to the question: 

`(10y+x)+45=10x+y` 

⇒`9y-9x=-45` 

⇒`y-x=5`                 ...................(2) 

From (1) and (2), we get 

`14/x-x=-5` 

⇒`(14-x^2)/x=-5` 

⇒`14-x^2=-5` 

⇒`x^2-5x-14=0` 

⇒`x^2-(7-2)x-14=0` 

⇒`x^2-7x+2x-14=0` 

⇒`x(x-7)+2(x-7)=0` 

⇒`(x-7)(x+2)=0` 

⇒`x-7=0  or  x+2=0` 

⇒`x=7  or  x=-2` 

⇒`x=7`              (∵the digit cannot be negative) 

Putting x =7 in equation (1), we get 

`y=2` 

∴ Required number=`10xx2+7=27`

               

 

shaalaa.com
Relationship Between Discriminant and Nature of Roots
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Quadratic Equations - Exercises 5

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 10 Quadratic Equations
Exercises 5 | Q 25
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×