Advertisements
Advertisements
प्रश्न
`15x^2-28=x`
उत्तर
Given:
`15x^2-28=x`
⇒`15x^2-x-28=0`
On comparing it with `ax^2+bx+c=0` we get;
`a=25,b=-1 and c=-28`
Discriminant D is given by:
`D=(b^2-4ac)`
=`(-1)^2-4xx15xx(-28)`
=`1-(-1680)`
=`1+1680`
=`1680`
=`1681>0`
Hence, the roots of the equation are real.
Roots α and β are given by:
`α=(-b+sqrt(D))/(2a)=(-(-1)+sqrt(1681))/(2xx25)=(1+41)/30=42/30=7/5`
`β=(-b-sqrt(D))/(2a)=(-(-1)-sqrt(1681))/(2xx25)=(1-41)/30=-40/30=(-4)/3`
Thus, the roots of the equation are `7/5` and `-4/3`
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt6x+3=0`
Find the value of a and b for which `x=3/4`and `x =-2` are the roots of the equation `ax^2+bx-6=0`
`25x^2+30x+7=0`
`16x^2+2ax+1`
`1/x-1/(x-2)=3,x≠0,2`
`x^2-4ax-b^2+4a^2=0`
Find the nature of roots of the following quadratic equations:
` 3x^2-2sqrt6x+2=0`
Find the values of p for which the quadratic equation `(p+1)x^2-6(p+1)x+3(p+9)=0` `p≠-11`has equal roots. Hence find the roots of the equation.
If the roots of the equation `(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0`are equal, prove that `a/b=c/d`
For what values of k, the roots of the quadratic equation (k + 4) x2 + (k + 1) x + 1 = 0 are equal ?