Advertisements
Advertisements
प्रश्न
`15x^2-28=x`
उत्तर
Given:
`15x^2-28=x`
⇒`15x^2-x-28=0`
On comparing it with `ax^2+bx+c=0` we get;
`a=25,b=-1 and c=-28`
Discriminant D is given by:
`D=(b^2-4ac)`
=`(-1)^2-4xx15xx(-28)`
=`1-(-1680)`
=`1+1680`
=`1680`
=`1681>0`
Hence, the roots of the equation are real.
Roots α and β are given by:
`α=(-b+sqrt(D))/(2a)=(-(-1)+sqrt(1681))/(2xx25)=(1+41)/30=42/30=7/5`
`β=(-b-sqrt(D))/(2a)=(-(-1)-sqrt(1681))/(2xx25)=(1-41)/30=-40/30=(-4)/3`
Thus, the roots of the equation are `7/5` and `-4/3`
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
3x2 + 2x + k = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
16x2 = 24x + 1
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3a2x2 + 8abx + 4b2 = 0, a ≠ 0
Solve for x
`x+1/x=3`, x ≠ 0
`x^2-(sqrt3+1)x+sqrt3=0`
`x^2-2ax+(a^2-b^2)=0`
Find the nature of roots of the following quadratic equations:
`12x^2-4sqrt15x+5=0`
Show that the roots of the equation `x^2+px-q^2=0` are real for all real values of p and q.
If the roots of the quadratic equation `(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0` are real and equal, show that either a=0 or `(a^3+b^3+c^3=3abc)`
If the roots of the equations `ax^2+2bx+c=0` and `bx^2-2sqrtacx+b=0`are simultaneously real then prove that `b^2=ac`