Advertisements
Advertisements
प्रश्न
`x^2-2ax+(a^2-b^2)=0`
उत्तर
Given:
`x^2-2ax+(a^2-b^2)=0`
On comparing it with `Ax^2+Bx+C=0` we get
`A=1, B=-2a and C=(a^2-b^2)`
Discriminant D is given by:
`D=B^2-4AC`
=`(-2a)^2-4xx1xx(a^2-b^2)`
=`4a^2-4a^2+4b^2`
=`4b^2>0`
Hence, the roots of the equation are real.
Roots α and β are given by:
`α=(-b+sqrt(D))/(2a)=(-(-2a)+sqrt4b^2)/(2xx1)=(2a+2b)/2=(2(a+b))/2=(a+b)`
`β=(-b-sqrt(D))/(2a)=(-(-2a)-sqrt4b^2)/(2xx1)=(2a-2b)/2=(2(a-b))/2=(a-b)`
Hence, the roots of the equation are (a +b) and (a +b).
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
16x2 = 24x + 1
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3a2x2 + 8abx + 4b2 = 0, a ≠ 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2+5sqrt3x+6=0`
Which of the following are the roots of `3x^2+2x-1=0?`
`1/3`
`11-x=2x^2`
`2x^2+5sqrt3x+6=0`
`x^2-2ax-(4b^2-a^2)=0`
Find the value of k for which the roots of `9x^2+8kx+16=0` are real and equal
For what value of k, are the roots of the quadratic equation kx (x − 2) + 6 = 0 equal ?
Solve for x: \[\frac{16}{x} - 1 = \frac{15}{x + 1}, x \neq 0, - 1\]