Advertisements
Advertisements
प्रश्न
For what values of k, the roots of the quadratic equation (k + 4) x2 + (k + 1) x + 1 = 0 are equal ?
उत्तर
The given quadratic equation is (k + 4)x2 + (k + 1)x + 1 = 0.
For equal roots, its discriminant, D is 0.
⇒ b2 − 4ac = 0 where a = k + 4, b = k + 1, c = 1
⇒ (k + 1)2 − 4(k + 4) × 1 = 0
⇒ k2 + 2k + 1− 4k − 16 = 0
⇒ k2 − 2k − 15 = 0
⇒ k2 − 5k + 3k − 15 = 0
⇒ k(k − 5) + 3(k − 5) = 0
⇒ (k − 5) (k + 3) = 0
⇒ k = 5 or k = −3
Thus, for k = 5 or k = −3, the given quadratic equation has equal roots.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
x2 + 2x + 4 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
16x2 = 24x + 1
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 5x + 2 = 0
Solve for x:
`1/x - 1/(x-2)=3`, x ≠ 0, 2
`4sqrt3x^2+5x-2sqrt3=0`
`x^2+x+2=0`
`3a^2x^2+8abx+4b^2=0`
`a^2b^2x^2-(4b^4-3a^4)x-12a^2b^2=0,a≠0 and b≠ 0`
If the roots of the quadratic equation `(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0` are real and equal, show that either a=0 or `(a^3+b^3+c^3=3abc)`
If the roots of the equations `ax^2+2bx+c=0` and `bx^2-2sqrtacx+b=0`are simultaneously real then prove that `b^2=ac`