English

A Two-digit Number is Such that the Product of Its Digits is 14. If 45 is Added to the Number, The Digit Interchange Their Places. Find the Number. - Mathematics

Advertisements
Advertisements

Question

A two-digit number is such that the product of its digits is 14. If 45 is added to the number, the digit interchange their places. Find the number. 

 

Solution

Let the digits at units and tens places be x and y, respectively. 

∴` xy=14` 

⇒`y=14/x`                      ...............(1) 

According to the question: 

`(10y+x)+45=10x+y` 

⇒`9y-9x=-45` 

⇒`y-x=5`                 ...................(2) 

From (1) and (2), we get 

`14/x-x=-5` 

⇒`(14-x^2)/x=-5` 

⇒`14-x^2=-5` 

⇒`x^2-5x-14=0` 

⇒`x^2-(7-2)x-14=0` 

⇒`x^2-7x+2x-14=0` 

⇒`x(x-7)+2(x-7)=0` 

⇒`(x-7)(x+2)=0` 

⇒`x-7=0  or  x+2=0` 

⇒`x=7  or  x=-2` 

⇒`x=7`              (∵the digit cannot be negative) 

Putting x =7 in equation (1), we get 

`y=2` 

∴ Required number=`10xx2+7=27`

               

 

shaalaa.com
Relationship Between Discriminant and Nature of Roots
  Is there an error in this question or solution?
Chapter 10: Quadratic Equations - Exercises 5

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 10 Quadratic Equations
Exercises 5 | Q 25
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×