Advertisements
Advertisements
Question
The denominator of a fraction is 3 more than its numerator. The sum of the fraction and its reciprocal is `2 9/10` Find the fraction.
Solution
Let the numerator be x.
∴Denominator =`x+3`
∴ Original number =`x/(x+3)`
According to the question:
`x/(x+3)+1/(x/(x+3))=2 9/10`
⇒`x/(x+3)+(x+3)/x=29/10`
⇒`(x^2+(x+3)^2)/(x(x+3))=29/10`
⇒`(x^2+x^2+6x+9)/(x^2+3x)=29/10`
⇒`(2x^2+6x+9)/(x^2+3x)=29/10`
⇒`29x^2+87x=20x^2+60x+90`
⇒`9x^2+27x-90=0`
⇒`9(x^2+3x-10)=0`
⇒`x^2+3x-10=0`
⇒`x^2+5x-2x-10=0`
⇒`x(x+5)-2(x+5)=0`
⇒`(x-2)(x+5)=0`
⇒`x-2=0 or x+5=0`
⇒`x=2 or x=-5` (rejected)
So, number =` x = 2 `
denominator =`x+3=2+3=5`
So, required fraction =`2/5`
APPEARS IN
RELATED QUESTIONS
Which of the following are the roots of` 3x^2+2x-1=0?`
-1
`4x^2+5x=0`
`3x^2-2x+2=0.b`
`x^2-2ax-(4b^2-a^2)=0`
`x^2+6x-(a^2+2a-8)=0`
`x^2-4ax-b^2+4a^2=0`
`4x^2-4bx-(a^2-b^2)=0`
Find the nature of roots of the following quadratic equations:
` 3x^2-2sqrt6x+2=0`
Find the nature of roots of the following quadratic equations:
`5x^2-4x+1=0`
Find the values of p for which the quadratic equation `(p+1)x^2-6(p+1)x+3(p+9)=0` `p≠-11`has equal roots. Hence find the roots of the equation.