Advertisements
Advertisements
प्रश्न
The denominator of a fraction is 3 more than its numerator. The sum of the fraction and its reciprocal is `2 9/10` Find the fraction.
उत्तर
Let the numerator be x.
∴Denominator =`x+3`
∴ Original number =`x/(x+3)`
According to the question:
`x/(x+3)+1/(x/(x+3))=2 9/10`
⇒`x/(x+3)+(x+3)/x=29/10`
⇒`(x^2+(x+3)^2)/(x(x+3))=29/10`
⇒`(x^2+x^2+6x+9)/(x^2+3x)=29/10`
⇒`(2x^2+6x+9)/(x^2+3x)=29/10`
⇒`29x^2+87x=20x^2+60x+90`
⇒`9x^2+27x-90=0`
⇒`9(x^2+3x-10)=0`
⇒`x^2+3x-10=0`
⇒`x^2+5x-2x-10=0`
⇒`x(x+5)-2(x+5)=0`
⇒`(x-2)(x+5)=0`
⇒`x-2=0 or x+5=0`
⇒`x=2 or x=-5` (rejected)
So, number =` x = 2 `
denominator =`x+3=2+3=5`
So, required fraction =`2/5`
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`sqrt3x^2+10x-8sqrt3=0`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3x2 - 2x + 2 = 0
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt2x+1=0`
`(x-1)(2x-1)=0`
`x^2-6x+4=0`
`sqrt2x^2+7+5sqrt2=0`
For what values of k are the roots of the quadratic equation `3x^2+2kx+27` real and equal ?
For what values of p are the roots of the equation `4x^2+px+3=0` real and equal?
Find the values of k for which the given quadratic equation has real and distinct roots:
`kx^2+6x+1=0`
Solve for x: \[\frac{16}{x} - 1 = \frac{15}{x + 1}, x \neq 0, - 1\]