Advertisements
Advertisements
प्रश्न
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
3a2x2 + 8abx + 4b2 = 0, a ≠ 0
उत्तर
We have been given, 3a2x2 + 8abx + 4b2 = 0
Now we also know that for an equation ax2 + bx + c = 0, the discriminant is given by the following equation:
D = b2 - 4ac
Now, according to the equation given to us, we have,a = 3a2, b = 8ab and c = 4b2.
Therefore, the discriminant is given as,
D = (8ab)2 - 4(3a2)(4b2)
= 64a2b2 - 48a2b2
= 16a2b2
Since, in order for a quadratic equation to have real roots, D ≥ 0.Here we find that the equation satisfies this condition, hence it has real roots.
Now, the roots of an equation is given by the following equation,
`x=(-b+-sqrtD)/(2a)`
Therefore, the roots of the equation are given as follows,
`x=(-(8ab)+-sqrt16a2b2)/(2(3a2))`
`=(-8ab+-4ab)/(6a^2)`
`=(-4b+-2b)/(3a)`
Now we solve both cases for the two values of x. So, we have,
`x=(-4b+2b)/(3a)`
`=-(2b)/(3a)`
Also,
`x=(-4b-2b)/(3a)`
`=(-2b)/a`
Therefore, the roots of the equation are `-(2b)/(3a)` and `(-2b)/a`.
APPEARS IN
संबंधित प्रश्न
Which of the following are the roots of` 3x^2+2x-1=0?`
-1
Which of the following are the roots of `3x^2+2x-1=0`
`-1/2`
` 2x^2-7x+6=0`
`(x-1)(2x-1)=0`
`x^2-6x+4=0`
`2x^2-2sqrt2x+1=0`
`4sqrt3x^2+5x-2sqrt3=0`
`2sqrt3x^2-5x+sqrt3=0`
Find the nature of roots of the following quadratic equations:
`12x^2-4sqrt15x+5=0`
A two-digit number is such that the product of its digits is 14. If 45 is added to the number, the digit interchange their places. Find the number.