Advertisements
Advertisements
प्रश्न
`2sqrt3x^2-5x+sqrt3=0`
उत्तर
The given equation is` 2sqrt3x^2-5x+sqrt3=0`
Comparing it with `ax^2+bx+c=0` we get
`a=2sqrt3, b=-5 and c=sqrt3`
∴ Discriminant, `D=b^2-4ac=(-5)^2-4xx2sqrt3xxsqrt3=25-25=1>0`
So, the given equation has real roots.
Now, `sqrtD=sqrt1=1`
∴` α=(-b+sqrt(D))/(2a)=(-(-5+1)+1)/(2xx2sqrt3)=6/(4sqrt3)=sqrt3/2`
`β=(-b-sqrt(D))/(2a)=(-(-5)-1)/(2xx2sqrt3)=4/(4sqrt(3))=sqrt(3)/3`
Hence, `sqrt3/2` and `sqrt3/3`are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Write the discriminant of the following quadratic equations:
x2 - 2x + k = 0, k ∈ R
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`2x^2-2sqrt6x+3=0`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
`3x^2+2sqrt5x-5=0`
Solve for x
`x+1/x=3`, x ≠ 0
`x^2+x+2=0`
`x+1/x=3,x≠0`
`3/n x^2 n/m=1-2x`
`x^2-2ax+(a^2-b^2)=0`
Find the nature of roots of the following quadratic equations:
`2x^2-8x+5=0`
Find the values of k for which the given quadratic equation has real and distinct roots:
`x^2-kx+9=0`