Advertisements
Advertisements
Question
`x^2-(2b-1)x+(b^2-b-20)=0`
Solution
The given equation is `x^2-(2b-1)x+(b^2-b-20)=0`
Comparing it with `Ax^2+Bx+C=0`
`A=1,B=-(2b-1) and C=b^2-b-20`
∴ Discriminant,
`D=B^2-4AC=[-(2b-1)]^2-4xx1xx(b^2-b-20)=4b^2-4b+1-4b^2+4b+80=81>0`
So, the given equation has real roots
Now, `sqrtD=sqrt18=9`
∴α=`(-B+sqrt(D))/(2A)=(-[-(2b-1)]+9)/(2xx1)=(2b+8)/2=b+4`
`β=(-B-sqrt(D))/(2A)=(-[-(2b-1)]-9)/(2xx1)=(2b-10)/2=b-5`
Hence, (b+4) and (b-5) are the roots of the given equation.
APPEARS IN
RELATED QUESTIONS
`(2x-3) (3x+1)=0`
`(x-1)(2x-1)=0`
`x^2-4x-1=0`
`2x^2+x-4=0`
`x^2+6x-(a^2+2a-8)=0`
Find the nature of roots of the following quadratic equations:
`5x^2-4x+1=0`
For what values of p are the roots of the equation `4x^2+px+3=0` real and equal?
Find the value of p for which the quadratic equation `(2p+1)x^2-(7p+2)x+(7p-3)=0` has real and equal roots.
If 3 is a root of the quadratic equation` x^2-x+k=0` find the value of p so that the roots of the equation `x^2+2kx+(k^2+2k+p)=0` are equal.
If the roots of the quadratic equation `(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0` are real and equal, show that either a=0 or `(a^3+b^3+c^3=3abc)`