Advertisements
Advertisements
प्रश्न
Show that the point (x, y) given by x = `(2at)/(1 + t^2)` and y = `(a(1 - t^2))/(1 - t^2)` lies on a circle for all real values of t such that –1 < t < 1 where a is any given real numbers.
योग
उत्तर
Given x = `(2at)/(1 + t^2)` and y = `(a(1 - t^2))/(1 + t^2)`
⇒ x2 + y2 = `((2at)/(1 + t^2))^2 + ((a(1 - t^2))/(1 + t^2))^2`
= `(4a^2t^2)/((1 + t^2)^2) + (a^2(1 - t^2)^2)/((1 + t^2)^2`
= `(4a^2t^2 + a^2(1 + t^4 - 2t^2))/(1 + t^2)^2`
= `(4a^2t^2 + a^2 + a^2t^4 - 2a^2t^2)/(1 + t^2)^2`
= `(a^2 + a^2t^4 + 2a^2t^2)/(1 + t^2)^2`
= `(a^2(1 + t^4 + 2t^2))/(1 + t^2)^2`
= `(a^2(1 + t^2)^2)/(1 + t^2)^2`
= a2
∴ x2 + y2 = a2 which is the equation of a circle.
Hence, the given points lie on a circle.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?