English

Show that the point (x, y) given by x = 2at1+t2 and y = a(1-t2)1-t2 lies on a circle for all real values of t such that –1 < t < 1 where a is any given real numbers. - Mathematics

Advertisements
Advertisements

Question

Show that the point (x, y) given by x = `(2at)/(1 + t^2)` and y = `(a(1 - t^2))/(1 - t^2)` lies on a circle for all real values of t such that –1 < t < 1 where a is any given real numbers.

Sum

Solution

Given x = `(2at)/(1 + t^2)` and y = `(a(1 - t^2))/(1 + t^2)`

⇒ x2 + y2 = `((2at)/(1 + t^2))^2 + ((a(1 - t^2))/(1 + t^2))^2`

= `(4a^2t^2)/((1 + t^2)^2) + (a^2(1 - t^2)^2)/((1 + t^2)^2`

= `(4a^2t^2 + a^2(1 + t^4 - 2t^2))/(1 + t^2)^2`

= `(4a^2t^2 + a^2 + a^2t^4 - 2a^2t^2)/(1 + t^2)^2`

= `(a^2 + a^2t^4 + 2a^2t^2)/(1 + t^2)^2`

= `(a^2(1 + t^4 + 2t^2))/(1 + t^2)^2`

= `(a^2(1 + t^2)^2)/(1 + t^2)^2`

= a2

∴ x2 + y2 = a2 which is the equation of a circle.

Hence, the given points lie on a circle.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise [Page 202]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise | Q 2 | Page 202
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×