Advertisements
Advertisements
प्रश्न
Show that the sum of an AP whose first term is a, the second term b and the last term c, is equal to `((a + c)(b + c - 2a))/(2(b - a))`
उत्तर
Given that, the AP is a, b, c
Here, first term = a,
Common difference = b – a
And last term, l = an = c
∵ an = l = a + (n – 1)d
⇒ c = a + (n – 1)(b – a)
⇒ (n – 1) = `(c - a)/(b - a)`
n = `(c - a)/(b - a) + 1`
⇒ n = `(c - a + b - a)/(b - a)`
= `(c + b - 2a)/(b - a)` ...(i)
∴ Sum of an AP,
Sn = `n/2 [2a + (n - 1)d]`
= `((b + c - 2a))/(2(b - a)) [2a + {(b + c - 2a)/(b - a) - 1}(b - a)]`
= `((b + c - 2a))/(2(b - a))[2a + (c - a)/(b - a) * (b - a)]`
= `((b + c - 2a))/(2(b - a)) (2a + c - a)`
= `((b + c - 2a))/(2(b - a)) * (a + c)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
In an AP: Given a = 5, d = 3, an = 50, find n and Sn.
In an AP given l = 28, S = 144, and there are total 9 terms. Find a.
Find the sum 2 + 4 + 6 ... + 200
Find the value of x for which the numbers (5x + 2), (4x - 1) and (x + 2) are in AP.
If the numbers a, 9, b, 25 from an AP, find a and b.
Find the sum of all multiples of 9 lying between 300 and 700.
If first term of an A.P. is a, second term is b and last term is c, then show that sum of all terms is \[\frac{\left( a + c \right) \left( b + c - 2a \right)}{2\left( b - a \right)}\].
Find the sum of numbers between 1 to 140, divisible by 4
The sum of the first 2n terms of the AP: 2, 5, 8, …. is equal to sum of the first n terms of the AP: 57, 59, 61, … then n is equal to ______.
The nth term of an A.P. is 6n + 4. The sum of its first 2 terms is ______.