Advertisements
Advertisements
प्रश्न
Simplify:\[\frac{16 m^3 y^2}{4 m^2 y}\]
उत्तर
\[\frac{16 m^3 y^2}{4 m^2 y}\]
\[ = \frac{16 \times m \times m \times m \times y \times y}{4 \times m \times m \times y}\]
\[ = 4 m^{(3 - 2)} y^{(2 - 1)} \]
\[ = 4my\]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(3y8 − 4y6 + 5y4) ÷ y4
Which of the following expressions are not polynomials?
Divide 14x2 − 53x + 45 by 7x − 9.
Divide 2y5 + 10y4 + 6y3 + y2 + 5y + 3 by 2y3 + 1.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 − 28y3 + 3y2 + 30y − 9 | 2y2 − 6 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
34x − 22x3 − 12x4 − 10x2 − 75 | 3x + 7 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
15y4 − 16y3 + 9y2 −\[\frac{10}{3}\] y+6 | 3y − 2 |
Find whether the first polynomial is a factor of the second.
4x2 − 5, 4x4 + 7x2 + 15
Find whether the first polynomial is a factor of the second.
4 − z, 3z2 − 13z + 4
Divide: