Advertisements
Advertisements
प्रश्न
Simplify:\[\frac{16 m^3 y^2}{4 m^2 y}\]
उत्तर
\[\frac{16 m^3 y^2}{4 m^2 y}\]
\[ = \frac{16 \times m \times m \times m \times y \times y}{4 \times m \times m \times y}\]
\[ = 4 m^{(3 - 2)} y^{(2 - 1)} \]
\[ = 4my\]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(x3 + 2x2 + 3x) ÷ 2x
Divide the given polynomial by the given monomial.
(p3q6 − p6q3) ÷ p3q3
Divide\[\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a\ \text{by}\ 3a\]
Divide 30x4 + 11x3 − 82x2 − 12x + 48 by 3x2 + 2x − 4 and find the quotient and remainder.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
4y3 + 8y + 8y2 + 7 | 2y2 − y + 1 |
Using division of polynomials, state whether
x + 6 is a factor of x2 − x − 42
Using division of polynomials, state whether
2y − 5 is a factor of 4y4 − 10y3 − 10y2 + 30y − 15
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
10x2 − 7x + 8, 5x − 3
Divide:
Statement A: If 24p2q is divided by 3pq, then the quotient is 8p.
Statement B: Simplification of `((5x + 5))/5` is 5x