Advertisements
Advertisements
प्रश्न
Divide\[\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a\ \text{by}\ 3a\]
उत्तर
\[\frac{\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a}{3a}\]
\[ = \frac{\sqrt{3} a^4}{3a} + \frac{2\sqrt{3} a^3}{3a} + \frac{3 a^2}{3a} - \frac{6a}{3a}\]
\[ = \frac{1}{\sqrt{3}} a^{(4 - 1)} + \frac{2}{\sqrt{3}} a^{(3 - 1)} + a^{(2 - 1)} - 2\]
\[ = \frac{1}{\sqrt{3}} a^3 + \frac{2}{\sqrt{3}} a^2 + a - 2\]
APPEARS IN
संबंधित प्रश्न
Which of the following expressions are not polynomials?
Write each of the following polynomials in the standard form. Also, write their degree.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
14x2 + 13x − 15 | 7x − 4 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 + 4y4 + 4y3 + 7y2 + 27y + 6 | 2y3 + 1 |
What must be added to x4 + 2x3 − 2x2 + x − 1 , so that the resulting polynomial is exactly divisible by x2 + 2x − 3?
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
x4 − x3 + 5x, x − 1
Divide: 8x − 10y + 6c by 2
Divide: −14x6y3 − 21x4y5 + 7x5y4 by 7x2y2
Divide: (32y2 – 8yz) by 2y
Divide: 81(p4q2r3 + 2p3q3r2 – 5p2q2r2) by (3pqr)2