Advertisements
Advertisements
Question
Divide\[\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a\ \text{by}\ 3a\]
Solution
\[\frac{\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a}{3a}\]
\[ = \frac{\sqrt{3} a^4}{3a} + \frac{2\sqrt{3} a^3}{3a} + \frac{3 a^2}{3a} - \frac{6a}{3a}\]
\[ = \frac{1}{\sqrt{3}} a^{(4 - 1)} + \frac{2}{\sqrt{3}} a^{(3 - 1)} + a^{(2 - 1)} - 2\]
\[ = \frac{1}{\sqrt{3}} a^3 + \frac{2}{\sqrt{3}} a^2 + a - 2\]
APPEARS IN
RELATED QUESTIONS
Write the degree of each of the following polynomials.
Which of the following expressions are not polynomials?
Which of the following expressions are not polynomials?
Divide 6x3y2z2 by 3x2yz.
Simplify:\[\frac{16 m^3 y^2}{4 m^2 y}\]
Divide 14x2 − 53x + 45 by 7x − 9.
Divide 9x4 − 4x2 + 4 by 3x2 − 4x + 2 and find the quotient and remainder.
Using division of polynomials, state whether
2y − 5 is a factor of 4y4 − 10y3 − 10y2 + 30y − 15
Find the value of a, if x + 2 is a factor of 4x4 + 2x3 − 3x2 + 8x + 5a.
Find whether the first polynomial is a factor of the second.
y − 2, 3y3 + 5y2 + 5y + 2