Advertisements
Advertisements
प्रश्न
Divide\[\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a\ \text{by}\ 3a\]
उत्तर
\[\frac{\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a}{3a}\]
\[ = \frac{\sqrt{3} a^4}{3a} + \frac{2\sqrt{3} a^3}{3a} + \frac{3 a^2}{3a} - \frac{6a}{3a}\]
\[ = \frac{1}{\sqrt{3}} a^{(4 - 1)} + \frac{2}{\sqrt{3}} a^{(3 - 1)} + a^{(2 - 1)} - 2\]
\[ = \frac{1}{\sqrt{3}} a^3 + \frac{2}{\sqrt{3}} a^2 + a - 2\]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(p3q6 − p6q3) ÷ p3q3
Write the degree of each of the following polynomials.
Write each of the following polynomials in the standard form. Also, write their degree.
Simplify:\[\frac{32 m^2 n^3 p^2}{4mnp}\]
Divide 3x3y2 + 2x2y + 15xy by 3xy.
Using division of polynomials, state whether
2x2 − x + 3 is a factor of 6x5 − x4 + 4x3 − 5x2 − x − 15
Divide:
x2 − 5x + 6 by x − 3
Divide:
Divide 24(x2yz + xy2z + xyz2) by 8xyz using both the methods.
The denominator of a fraction exceeds Its numerator by 8. If the numerator is increased by 17 and the denominator is decreased by 1, we get `3/2`. Find the original fraction.