Advertisements
Advertisements
प्रश्न
Using division of polynomials, state whether
2x2 − x + 3 is a factor of 6x5 − x4 + 4x3 − 5x2 − x − 15
उत्तर
Remainder is zero ; therefore,
APPEARS IN
संबंधित प्रश्न
Write the degree of each of the following polynomials.
2x2 + 5x2 − 7
Divide 24a3b3 by −8ab.
Divide −21abc2 by 7abc.
Divide 72xyz2 by −9xz.
Divide 4y2 + 3y +\[\frac{1}{2}\] by 2y + 1.
Divide m3 − 14m2 + 37m − 26 by m2 − 12m +13.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
15z3 − 20z2 + 13z − 12 | 3z − 6 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 − 28y3 + 3y2 + 30y − 9 | 2y2 − 6 |
Divide 15y4 + 16y3 +\[\frac{10}{3}\]y − 9y2 − 6 by 3y − 2. Write down the coefficients of the terms in the quotient.
Using division of polynomials, state whether
x + 6 is a factor of x2 − x − 42