Advertisements
Advertisements
प्रश्न
Find the value of a, if x + 2 is a factor of 4x4 + 2x3 − 3x2 + 8x + 5a.
उत्तर
\[\text{We have to find the value of a if} (x + 2) \text{is a factor of} (4 x^4 + 2 x^3 - 3 x^2 + 8x + 5a) . \]
\[\text{Substituting}\ x = - 2\ \text{in}\ 4 x^4 + 2 x^3 - 3 x^2 + 8x + 5a, \text{we get:} \]
\[4( - 2 )^4 + 2( - 2 )^3 - 3( - 2 )^2 + 8( - 2) + 5a = 0\]
\[or, 64 - 16 - 12 - 16 + 5a = 0\]
\[or, 5a = - 20\]
\[or, a = - 4\]
\[ \therefore If (x + 2) \text{is a factor of}\ (4 x^4 + 2 x^3 - 3 x^2 + 8x + 5a), a = - 4 . \]
APPEARS IN
संबंधित प्रश्न
Write each of the following polynomials in the standard form. Also, write their degree.
Simplify:\[\frac{32 m^2 n^3 p^2}{4mnp}\]
Divide \[y^4 - 3 y^3 + \frac{1}{2} y^2 by 3y\]
Divide 5z3 − 6z2 + 7z by 2z.
Divide 5x3 − 15x2 + 25x by 5x.
Divide 9x2y − 6xy + 12xy2 by −\[\frac{3}{2}\]
Divide x2 + 7x + 12 by x + 4.
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
x4 − x3 + 5x, x − 1
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
y4 + y2, y2 − 2
Find whether the first polynomial is a factor of the second.
2a − 3, 10a2 − 9a − 5