Advertisements
Advertisements
प्रश्न
Find the value of a, if x + 2 is a factor of 4x4 + 2x3 − 3x2 + 8x + 5a.
उत्तर
\[\text{We have to find the value of a if} (x + 2) \text{is a factor of} (4 x^4 + 2 x^3 - 3 x^2 + 8x + 5a) . \]
\[\text{Substituting}\ x = - 2\ \text{in}\ 4 x^4 + 2 x^3 - 3 x^2 + 8x + 5a, \text{we get:} \]
\[4( - 2 )^4 + 2( - 2 )^3 - 3( - 2 )^2 + 8( - 2) + 5a = 0\]
\[or, 64 - 16 - 12 - 16 + 5a = 0\]
\[or, 5a = - 20\]
\[or, a = - 4\]
\[ \therefore If (x + 2) \text{is a factor of}\ (4 x^4 + 2 x^3 - 3 x^2 + 8x + 5a), a = - 4 . \]
APPEARS IN
संबंधित प्रश्न
Which of the following expressions are not polynomials?
Write each of the following polynomials in the standard form. Also, write their degree.
(y3 − 2)(y3 + 11)
Divide 6x3y2z2 by 3x2yz.
Divide 3x3 + 4x2 + 5x + 18 by x + 2.
Divide m3 − 14m2 + 37m − 26 by m2 − 12m +13.
Divide 6x3 + 11x2 − 39x − 65 by 3x2 + 13x + 13 and find the quotient and remainder.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 − 28y3 + 3y2 + 30y − 9 | 2y2 − 6 |
Divide 15y4 + 16y3 +\[\frac{10}{3}\]y − 9y2 − 6 by 3y − 2. Write down the coefficients of the terms in the quotient.
Using division of polynomials, state whether
3y2 + 5 is a factor of 6y5 + 15y4 + 16y3 + 4y2 + 10y − 35
Find whether the first polynomial is a factor of the second.
4 − z, 3z2 − 13z + 4