Advertisements
Advertisements
प्रश्न
Using division of polynomials, state whether
2x2 − x + 3 is a factor of 6x5 − x4 + 4x3 − 5x2 − x − 15
बेरीज
उत्तर
Remainder is zero ; therefore,
\[2 x^2 - x + 3\] is a factor of\[6 x^5 - x^4 + 4 x^3 - 5 x^2 - x - 15\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Write the degree of each of the following polynomials.
20x3 + 12x2y2 − 10y2 + 20
Write each of the following polynomials in the standard form. Also, write their degree.
x2 + 3 + 6x + 5x4
Divide 72xyz2 by −9xz.
Divide 3x3y2 + 2x2y + 15xy by 3xy.
Divide x2 + 7x + 12 by x + 4.
Divide:
x4 − y4 by x2 − y2
Divide: 8x − 10y + 6c by 2
Divide: −14x6y3 − 21x4y5 + 7x5y4 by 7x2y2
Divide: 81(p4q2r3 + 2p3q3r2 – 5p2q2r2) by (3pqr)2
Statement A: If 24p2q is divided by 3pq, then the quotient is 8p.
Statement B: Simplification of `((5x + 5))/5` is 5x