Advertisements
Advertisements
प्रश्न
Divide: −14x6y3 − 21x4y5 + 7x5y4 by 7x2y2
उत्तर
`(-14"x"^6"y"^3-21"x"^4"y"^5 +7"x"^5"y"^4) /(7"x"^2"y"^2)`
`=(-14"x"^6"y"^3)/(7"x"^2"y"^2)-(21"x"^4)/(7"x"^2"y"^2)+(7"x"^5"y"^4)/(7"x"^2"y"^2)`
= −2x6−2y3−2 −3x4−2y5−2 + x5−2y4−2
= −2x4y − 3x2y3 + x3y2
APPEARS IN
संबंधित प्रश्न
Write the degree of each of the following polynomials.
2x2 + 5x2 − 7
Simplify:\[\frac{32 m^2 n^3 p^2}{4mnp}\]
Divide x + 2x2 + 3x4 − x5 by 2x.
Divide 3x3y2 + 2x2y + 15xy by 3xy.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
14x2 + 13x − 15 | 7x − 4 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
34x − 22x3 − 12x4 − 10x2 − 75 | 3x + 7 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 + 4y4 + 4y3 + 7y2 + 27y + 6 | 2y3 + 1 |
Using division of polynomials, state whether
2y − 5 is a factor of 4y4 − 10y3 − 10y2 + 30y − 15
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
x4 − x3 + 5x, x − 1
Find whether the first polynomial is a factor of the second.
4 − z, 3z2 − 13z + 4