Advertisements
Advertisements
प्रश्न
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
34x − 22x3 − 12x4 − 10x2 − 75 | 3x + 7 |
उत्तर
Quotient = - 4x3 + 2x2 - 8x + 30
Remainder = - 285
Divisor = 3x + 7
Divisor x Quotient + Remainder = (3x + 7) (- 4x3 + 2x2 - 8x + 30) - 285
= 12x4 + 6x3 - 24x2 + 90x - 28x3 + 14x2 - 56x + 210 - 285
= - 12x 4 - 22x3 -10x2 + 34x - 75
= Dividend
Thus,
Divisor x Quotient + Remainder = Dividend
Hence verified.
APPEARS IN
संबंधित प्रश्न
Write the degree of each of the following polynomials.
2x2 + 5x2 − 7
Divide 6x3y2z2 by 3x2yz.
Divide 6x3 − x2 − 10x − 3 by 2x − 3 and find the quotient and remainder.
Divide 15y4 + 16y3 +\[\frac{10}{3}\]y − 9y2 − 6 by 3y − 2. Write down the coefficients of the terms in the quotient.
Using division of polynomials, state whether
4x − 1 is a factor of 4x2 − 13x − 12
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
5y3 − 6y2 + 6y − 1, 5y − 1
Divide:
(a2 + 2ab + b2) − (a2 + 2ac + c2) by 2a + b + c
Divide: 8x − 10y + 6c by 2
8x3y ÷ 4x2 = 2xy
Simplify `(14"p"^5"q"^3)/(2"p"^2"q") - (12"p"^3"q"^4)/(3"q"^2)`