Advertisements
Advertisements
प्रश्न
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
5y3 − 6y2 + 6y − 1, 5y − 1
उत्तर
\[\frac{5 y^3 - 6 y^2 + 6y - 1}{5y - 1}\]
\[ = \frac{y^2 (5y - 1) - y(5y - 1) + 1(5y - 1)}{(5y - 1)}\]
\[ = \frac{(5y - 1)( y^2 - y + 1)}{(5y - 1)}\]
\[ = ( y^2 - y + 1)\]
\[\text{Therefore,} \]
\[\text{Quotient = y^2 - y + 1 and remainder = 0}\]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2
Divide −21abc2 by 7abc.
Divide 5z3 − 6z2 + 7z by 2z.
Divide 5x3 − 15x2 + 25x by 5x.
Divide 9x2y − 6xy + 12xy2 by −\[\frac{3}{2}\]
Divide x4 − 2x3 + 2x2 + x + 4 by x2 + x + 1.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
34x − 22x3 − 12x4 − 10x2 − 75 | 3x + 7 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
4y3 + 8y + 8y2 + 7 | 2y2 − y + 1 |
Divide:
(a2 + 2ab + b2) − (a2 + 2ac + c2) by 2a + b + c
Divide 27y3 by 3y