Advertisements
Advertisements
प्रश्न
Divide:
(a2 + 2ab + b2) − (a2 + 2ac + c2) by 2a + b + c
उत्तर
\[\frac{( a^2 + 2ab + b^2 ) - ( a^2 + 2ac + c^2 )}{(2a + b + c)}\]
\[ = \frac{(a + b )^2 - (a + c )^2}{(2a + b + c)}\]
\[ = \frac{(a + b + a + c)(a + b - a - c)}{(2a + b + c)}\]
\[ = \frac{(2a + b + c)(b - c)}{(2a + b + c)}\]
\[ = b - c\]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(3y8 − 4y6 + 5y4) ÷ y4
Divide the given polynomial by the given monomial.
(p3q6 − p6q3) ÷ p3q3
Divide 6x3y2z2 by 3x2yz.
Divide 72xyz2 by −9xz.
Simplify:\[\frac{32 m^2 n^3 p^2}{4mnp}\]
Divide 4z3 + 6z2 − z by −\[\frac{1}{2}\]
Divide m3 − 14m2 + 37m − 26 by m2 − 12m +13.
Divide x4 + x2 + 1 by x2 + x + 1.
Find whether the first polynomial is a factor of the second.
x + 1, 2x2 + 5x + 4
Find whether the first polynomial is a factor of the second.
4x2 − 5, 4x4 + 7x2 + 15