Advertisements
Advertisements
प्रश्न
Divide:
(a2 + 2ab + b2) − (a2 + 2ac + c2) by 2a + b + c
उत्तर
\[\frac{( a^2 + 2ab + b^2 ) - ( a^2 + 2ac + c^2 )}{(2a + b + c)}\]
\[ = \frac{(a + b )^2 - (a + c )^2}{(2a + b + c)}\]
\[ = \frac{(a + b + a + c)(a + b - a - c)}{(2a + b + c)}\]
\[ = \frac{(2a + b + c)(b - c)}{(2a + b + c)}\]
\[ = b - c\]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(x3 + 2x2 + 3x) ÷ 2x
Write the degree of each of the following polynomials.
2x2 + 5x2 − 7
Write each of the following polynomials in the standard form. Also, write their degree.
(x3 − 1)(x3 − 4)
Simplify:\[\frac{32 m^2 n^3 p^2}{4mnp}\]
Divide \[y^4 - 3 y^3 + \frac{1}{2} y^2 by 3y\]
Divide −4a3 + 4a2 + a by 2a.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
15z3 − 20z2 + 13z − 12 | 3z − 6 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 + 4y4 + 4y3 + 7y2 + 27y + 6 | 2y3 + 1 |
Using division of polynomials, state whether
2x2 − x + 3 is a factor of 6x5 − x4 + 4x3 − 5x2 − x − 15
Find whether the first polynomial is a factor of the second.
2a − 3, 10a2 − 9a − 5