Advertisements
Advertisements
प्रश्न
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
15z3 − 20z2 + 13z − 12 | 3z − 6 |
उत्तर
\[\text{Quotient} = 5 z^2 + \frac{10}{3}z + 11\]
\[\text{Remainder} = 54\]
\[\text{Divisor} = 3z - 6\]
\[\text{Divisor} \times \text{Quotient} + \text{Remainder} = (3z - 6)\left( 5 z^2 + \frac{10}{3}z + 11 \right) + 54\]
\[ = 15 z^3 + 10 z^2 + 33z - 30 z^2 - 20z - 66 + 54\]
\[ = 15 z^3 - 20 z^2 + 13z - 12\]
\[ = \text{Dividend}\]
\[Thus, \]
\[\text{Divisor} \times \text{Quotient} + \text{Remainder} = \text{Dividend}\]
APPEARS IN
संबंधित प्रश्न
Write the degree of each of the following polynomials.
5x2 − 3x + 2
Divide\[\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a\ \text{by}\ 3a\]
Divide x4 − 2x3 + 2x2 + x + 4 by x2 + x + 1.
Divide 30x4 + 11x3 − 82x2 − 12x + 48 by 3x2 + 2x − 4 and find the quotient and remainder.
Using division of polynomials, state whether
4x − 1 is a factor of 4x2 − 13x − 12
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
3x2 + 4x + 5, x − 2
Divide: 15a3b4 − 10a4b3 − 25a3b6 by −5a3b2
Simplify `(14"p"^5"q"^3)/(2"p"^2"q") - (12"p"^3"q"^4)/(3"q"^2)`
Divide: (32y2 – 8yz) by 2y
The denominator of a fraction exceeds Its numerator by 8. If the numerator is increased by 17 and the denominator is decreased by 1, we get `3/2`. Find the original fraction.