Advertisements
Advertisements
प्रश्न
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
15z3 − 20z2 + 13z − 12 | 3z − 6 |
उत्तर
\[\text{Quotient} = 5 z^2 + \frac{10}{3}z + 11\]
\[\text{Remainder} = 54\]
\[\text{Divisor} = 3z - 6\]
\[\text{Divisor} \times \text{Quotient} + \text{Remainder} = (3z - 6)\left( 5 z^2 + \frac{10}{3}z + 11 \right) + 54\]
\[ = 15 z^3 + 10 z^2 + 33z - 30 z^2 - 20z - 66 + 54\]
\[ = 15 z^3 - 20 z^2 + 13z - 12\]
\[ = \text{Dividend}\]
\[Thus, \]
\[\text{Divisor} \times \text{Quotient} + \text{Remainder} = \text{Dividend}\]
APPEARS IN
संबंधित प्रश्न
Which of the following expressions are not polynomials?
Write each of the following polynomials in the standard form. Also, write their degree.
(y3 − 2)(y3 + 11)
Divide \[y^4 - 3 y^3 + \frac{1}{2} y^2 by 3y\]
Divide 3x3 + 4x2 + 5x + 18 by x + 2.
Divide 6x3 − x2 − 10x − 3 by 2x − 3 and find the quotient and remainder.
Divide 30x4 + 11x3 − 82x2 − 12x + 48 by 3x2 + 2x − 4 and find the quotient and remainder.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 + 4y4 + 4y3 + 7y2 + 27y + 6 | 2y3 + 1 |
Using division of polynomials, state whether
z2 + 3 is a factor of z5 − 9z
Find whether the first polynomial is a factor of the second.
2a − 3, 10a2 − 9a − 5
Divide: 15a3b4 − 10a4b3 − 25a3b6 by −5a3b2