Advertisements
Advertisements
प्रश्न
Divide \[y^4 - 3 y^3 + \frac{1}{2} y^2 by 3y\]
उत्तर
\[\frac{y^4 - 3 y^3 + \frac{1}{2} y^2}{3y}\]
\[ = \frac{y^4}{3y} - \frac{3 y^3}{3y} + \frac{\frac{1}{2} y^2}{3y}\]
\[ = \frac{1}{3} y^{(4 - 1)} - y^{(3 - 1)} + \frac{1}{6} y^{(2 - 1)} \]
\[ = \frac{1}{3} y^3 - y^2 + \frac{1}{6}y\]
APPEARS IN
संबंधित प्रश्न
Write the degree of each of the following polynomials.
2x2 + 5x2 − 7
Which of the following expressions are not polynomials?
Write each of the following polynomials in the standard form. Also, write their degree.
a2 + 4 + 5a6
Divide 24a3b3 by −8ab.
Divide 4y2 + 3y +\[\frac{1}{2}\] by 2y + 1.
Divide −21 + 71x − 31x2 − 24x3 by 3 − 8x.
Divide 3y4 − 3y3 − 4y2 − 4y by y2 − 2y.
Using division of polynomials, state whether
2y − 5 is a factor of 4y4 − 10y3 − 10y2 + 30y − 15
Divide:
Divide: 8x − 10y + 6c by 2