Advertisements
Advertisements
प्रश्न
Divide −4a3 + 4a2 + a by 2a.
उत्तर
\[\frac{- 4 a^3 + 4 a^2 + a}{2a}\]
\[ = \frac{- 4 a^3}{2a} + \frac{4 a^2}{2a} + \frac{a}{2a}\]
\[ = - 2 a^{(3 - 1)} + 2 a^{(2 - 1)} + \frac{1}{2}\]
\[ = - 2 a^2 + 2a + \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Divide −72a4b5c8 by −9a2b2c3.
Divide\[\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a\ \text{by}\ 3a\]
Divide m3 − 14m2 + 37m − 26 by m2 − 12m +13.
Divide x5 + x4 + x3 + x2 + x + 1 by x3 + 1.
Divide 14x3 − 5x2 + 9x − 1 by 2x − 1 and find the quotient and remainder
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
34x − 22x3 − 12x4 − 10x2 − 75 | 3x + 7 |
Using division of polynomials, state whether
4x − 1 is a factor of 4x2 − 13x − 12
Using division of polynomials, state whether
2x2 − x + 3 is a factor of 6x5 − x4 + 4x3 − 5x2 − x − 15
Divide: 8x − 10y + 6c by 2
Divide: (32y2 – 8yz) by 2y