Advertisements
Advertisements
प्रश्न
Divide\[- x^6 + 2 x^4 + 4 x^3 + 2 x^2\ \text{by} \sqrt{2} x^2\]
उत्तर
\[\frac{- x^6 + 2 x^4 + 4 x^3 + 2 x^2}{\sqrt{2} x^2}\]
\[ = \frac{- x^6}{\sqrt{2} x^2} + \frac{2 x^4}{\sqrt{2} x^2} + \frac{4 x^3}{\sqrt{2} x^2} + \frac{2 x^2}{\sqrt{2} x^2}\]
\[ = \frac{- 1}{\sqrt{2}} x^{(6 - 2)} + \sqrt{2} x^{(4 - 2)} + 2\sqrt{2} x^{(3 - 2)} + \sqrt{2} x^{(2 - 2)} \]
\[ = \frac{- 1}{\sqrt{2}} x^4 + \sqrt{2} x^2 + 2\sqrt{2}x + \sqrt{2}\]
APPEARS IN
संबंधित प्रश्न
Write each of the following polynomials in the standard form. Also, write their degree.
a2 + 4 + 5a6
Divide\[\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a\ \text{by}\ 3a\]
Divide 2y5 + 10y4 + 6y3 + y2 + 5y + 3 by 2y3 + 1.
Divide x4 − 2x3 + 2x2 + x + 4 by x2 + x + 1.
Divide x5 + x4 + x3 + x2 + x + 1 by x3 + 1.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
15y4 − 16y3 + 9y2 −\[\frac{10}{3}\] y+6 | 3y − 2 |
Find the value of a, if x + 2 is a factor of 4x4 + 2x3 − 3x2 + 8x + 5a.
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
y4 + y2, y2 − 2
Divide:
x2 − 5x + 6 by x − 3
Divide:
x4 − y4 by x2 − y2