Advertisements
Advertisements
Question
Divide \[y^4 - 3 y^3 + \frac{1}{2} y^2 by 3y\]
Solution
\[\frac{y^4 - 3 y^3 + \frac{1}{2} y^2}{3y}\]
\[ = \frac{y^4}{3y} - \frac{3 y^3}{3y} + \frac{\frac{1}{2} y^2}{3y}\]
\[ = \frac{1}{3} y^{(4 - 1)} - y^{(3 - 1)} + \frac{1}{6} y^{(2 - 1)} \]
\[ = \frac{1}{3} y^3 - y^2 + \frac{1}{6}y\]
APPEARS IN
RELATED QUESTIONS
Divide the given polynomial by the given monomial.
(x3 + 2x2 + 3x) ÷ 2x
Write the degree of each of the following polynomials.
Divide 6x3y2z2 by 3x2yz.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 + 4y4 + 4y3 + 7y2 + 27y + 6 | 2y3 + 1 |
Using division of polynomials, state whether
2y − 5 is a factor of 4y4 − 10y3 − 10y2 + 30y − 15
Find whether the first polynomial is a factor of the second.
4x2 − 5, 4x4 + 7x2 + 15
Find whether the first polynomial is a factor of the second.
2a − 3, 10a2 − 9a − 5
Divide:
acx2 + (bc + ad)x + bd by (ax + b)
Divide: 15a3b4 − 10a4b3 − 25a3b6 by −5a3b2
8x3y ÷ 4x2 = 2xy