Advertisements
Advertisements
प्रश्न
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
6y5 + 4y4 + 4y3 + 7y2 + 27y + 6 | 2y3 + 1 |
उत्तर
Quotient = 3y2 + 2y + 2
Remainder = 4y2 + 25y + 4
Divisor = 2y3 + 1
Divisor x Quotient + Remainder = (2y3 + 1) (3y2 + 2y + 2) + 4y2 + 25y + 4
= 6y5 + 4y4 + 4y3 + 3y2 + 2y + 2 + 4y2 + 25y + 4
= 6y5 + 4y4 + 4y3 + 7y2 + 27y + 6
= Dividend
Thus,
Divisor x Quotient + Remainder = Dividend
Hence verified.
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(3y8 − 4y6 + 5y4) ÷ y4
Divide 72xyz2 by −9xz.
Divide x + 2x2 + 3x4 − x5 by 2x.
Divide \[y^4 - 3 y^3 + \frac{1}{2} y^2 by 3y\]
Divide −21 + 71x − 31x2 − 24x3 by 3 − 8x.
Divide m3 − 14m2 + 37m − 26 by m2 − 12m +13.
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
3x2 + 4x + 5, x − 2
Find whether the first polynomial is a factor of the second.
x + 1, 2x2 + 5x + 4
Divide:
acx2 + (bc + ad)x + bd by (ax + b)
Divide: 81(p4q2r3 + 2p3q3r2 – 5p2q2r2) by (3pqr)2