Advertisements
Advertisements
प्रश्न
Divide: 81(p4q2r3 + 2p3q3r2 – 5p2q2r2) by (3pqr)2
उत्तर
`(81("p"^4"q"^2"r"^3 + 2"p"^3"q"^3"r"^2 - 5"p"^2"q"^2"r"^2))/((3"pqr")^2)`
= `(81("p"^2"q"^2"r"^2)("p"^2"r" + 2"pq" - 5))/(9("p"^2"q"^2"r"^2))`
= `81/9 ("p"^2"q"^2"r"^2)^(1-1) ("p"^2"r" + 2"pq" - 5)`
= 9(p2r + 2pq – 5)
= 9p2r + 18pq – 45
APPEARS IN
संबंधित प्रश्न
Divide 24a3b3 by −8ab.
Simplify:\[\frac{16 m^3 y^2}{4 m^2 y}\]
Divide −4a3 + 4a2 + a by 2a.
Divide 14x2 − 53x + 45 by 7x − 9.
Divide 3y4 − 3y3 − 4y2 − 4y by y2 − 2y.
Divide x5 + x4 + x3 + x2 + x + 1 by x3 + 1.
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
5y3 − 6y2 + 6y − 1, 5y − 1
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
y4 + y2, y2 − 2
Divide:
acx2 + (bc + ad)x + bd by (ax + b)
Statement A: If 24p2q is divided by 3pq, then the quotient is 8p.
Statement B: Simplification of `((5x + 5))/5` is 5x