Advertisements
Advertisements
प्रश्न
Find whether the first polynomial is a factor of the second.
4x2 − 5, 4x4 + 7x2 + 15
उत्तर
\[(\frac{4 x^4 +^2 +15}{{4x}^2 -5}\]
\[ = \frac{x^2 {(4x}^2 {-5)+3(4x}^2 -5)+30}{{4x}^2 -5}\]
\[ = \frac{( {4x}^2 {-5)(x}^2 +3 ) +30}{{4x}^2 -5}\]
\[ {=(x}^2 +3 ) + \frac{30}{{4x}^2 -5}\]
\[ \because \text{Remainder = 30}\]
\[\text{Therefore,} (4 x^2 - 5) \text{is not a factor of}\ 4 x^4 + 7 x^2 + 15\]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(5x2 − 6x) ÷ 3x
Divide the given polynomial by the given monomial.
(p3q6 − p6q3) ÷ p3q3
Write the degree of each of the following polynomials.
Which of the following expressions are not polynomials?
Write each of the following polynomials in the standard form. Also, write their degree.
Divide −72a4b5c8 by −9a2b2c3.
Divide\[\sqrt{3} a^4 + 2\sqrt{3} a^3 + 3 a^2 - 6a\ \text{by}\ 3a\]
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
14x2 + 13x − 15 | 7x − 4 |
Find whether the first polynomial is a factor of the second.
4y + 1, 8y2 − 2y + 1
Divide: −14x6y3 − 21x4y5 + 7x5y4 by 7x2y2