Advertisements
Advertisements
प्रश्न
Find whether the first polynomial is a factor of the second.
y − 2, 3y3 + 5y2 + 5y + 2
उत्तर
\[\frac{{3y}^3 {+5y}^2 +5y+2}{y-2}\]
\[ = \frac{{3y}^2 (y-2)+11y(y-2)+27(y-2)+56}{y-2}\]
\[ = \frac{{(y-2)(3y}^2 +11y+27)+56}{y-2}\]
\[ {=(3y}^2 +11y+27)+ \frac{56}{y-2}\]
\[ \because \text{Remainder} = 56\]
\[ \therefore \text{(y-2) is not a factor of}\ {3y}^3 {+5y}^2 +5y+2.\]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2
Write the degree of each of the following polynomials.
5x2 − 3x + 2
Divide x4 − 2x3 + 2x2 + x + 4 by x2 + x + 1.
Divide 9x4 − 4x2 + 4 by 3x2 − 4x + 2 and find the quotient and remainder.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
15z3 − 20z2 + 13z − 12 | 3z − 6 |
Using division of polynomials, state whether
2x2 − x + 3 is a factor of 6x5 − x4 + 4x3 − 5x2 − x − 15
Divide:
8x3y ÷ 4x2 = 2xy
7ab3 ÷ 14ab = 2b2
Simplify `(14"p"^5"q"^3)/(2"p"^2"q") - (12"p"^3"q"^4)/(3"q"^2)`