Advertisements
Advertisements
प्रश्न
Simplify.
`sqrt 216 - 5 sqrt 6 +sqrt 294 -3/sqrt6`
उत्तर
`sqrt 216 - 5 sqrt 6 +sqrt 294 -3/sqrt6`
`= sqrt(36 xx 6) -5 sqrt 6 + sqrt(49 xx 6) -3/sqrt6 xx sqrt 6/sqrt 6`
`= 6sqrt 6 - 5sqrt 6 + 7sqrt6 -(3sqrt6)/6`
`= 6sqrt 6 - 5sqrt 6 + 7sqrt6 -(sqrt6)/2`
`= (6 - 5 + 7 - 1/2) sqrt6`
= `(8/1 - 1/2) sqrt6`
= `((16-1)/2) sqrt6`
`= 15/2sqrt6`
APPEARS IN
संबंधित प्रश्न
Simplify.
`sqrt 7 - 3/5 sqrt 7 + 2 sqrt 7`
Divide and write the answer in simplest form.
`sqrt 125 ÷ sqrt 50`
Divide and write the answer in simplest form.
`sqrt 310 ÷ sqrt 5`
Simplify.
`4 sqrt 12 - sqrt 75 - 7 sqrt 48`
Simplify the following using multiplication and division properties of surds:
`sqrt(3) xx sqrt(5) xx sqrt(2)`
Simplify the following using multiplication and division properties of surds:
`(7sqrt("a") - 5sqrt("b")) (7sqrt("a") + 5sqrt("b"))`
Simplify the following using multiplication and division properties of surds:
`[sqrt(225/729) - sqrt(25/144)] ÷ sqrt(16/81)`
If `sqrt(2)` = 1.414, `sqrt(3)` = 1.732, `sqrt(5)` = 2.236, `sqrt(10)` = 3.162, then find the values of the following correct to 3 places of decimals.
`sqrt(40) - sqrt(20)`
`4sqrt(7) xx 2sqrt(3)` =
When `(2sqrt(5) - sqrt(2))^2` is simplified, we get