Advertisements
Advertisements
प्रश्न
Simplify:
`(125"x"^-3)^(1/3)`
योग
उत्तर
`(125"x"^-3)^(1/3)`
`=(125)^(1/3) * "x"^(-3xx1/3) ...(because ("a"^"m")^"n" = "a"^("m" xx "n") "and" " a"^"m" xx "a"^"n" = "a"^("m" xx "n"))`
`=(5xx5xx5)^(1/3)."x"^-1`
`= (5^3)^(1/3) * x^-1`
`= (5^cancel(3))^(1/cancel(3)) * x^-1`
= `5x^-1`
shaalaa.com
More About Exponents
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Compute:
`1^8xx3^0xx5^3xx2^2`
Compute:
`(2/3)^(-4)xx(27/8)^-2`
Compute:
`(-5)^4xx(-5)^6÷(-5)^9`
Compute:
`(27)^(2/3)÷(81/16)^(-1/4)`
Evaluate:
`8^0+4^0+2^0`
Evaluate:
`4"x"^0`
Evaluate:
`(4"x")^0`
Evaluate:
`[(10^3)^0]^5`
Simplify:
`("a"^5"b"^2)/("a"^2"b"^-3`
Find the value of n, when:
`("a"^(2"n"-3)xx("a"^2)^("n"+1))/(("a"^4)^-3)=("a"^3)^3÷("a"^6)^-3`