Advertisements
Advertisements
प्रश्न
Find the value of n, when:
`("a"^(2"n"-3)xx("a"^2)^("n"+1))/(("a"^4)^-3)=("a"^3)^3÷("a"^6)^-3`
उत्तर
`("a"^(2"n"-3)xx("a"^2)^("n"+1))/(("a"^4)^-3)=("a"^3)^3÷("a"^6)^-3`
`("a"^(2"n"-3)xxa^(2"n"+2))/"a"^-12="a"^9÷"a"^-18`
`("a"^(2"n"-3)xx2^(2"n"+2))/"a"^-12="a"^9/"a"^-18`
`"a"^(2"n"-3+2"n"+2-(-12)="a"^9-(-18))`
`"a"^(4"n"+11)="a"^27`
Comparing both sides, we get
`4"n"+11=27`
`⇒4"n"=27-11`
`⇒"n"=16/4=4`
APPEARS IN
संबंधित प्रश्न
Compute:
`1^8xx3^0xx5^3xx2^2`
Compute:
`(12)^-2xx3^3`
Compute:
`(27/64)^(-2/3)`
Simplify:
`8^(4/3)+25^(3/2)-(1/27)^(-2/3)`
Evaluate:
`[(10^3)^0]^5`
Evaluate:
`9^0+9^-1-9^-2+9^(1/2)-9^(-1/2)`
Simplify:
`15"y"^8÷3"y"^3`
Simplify:
`(27"x"^-3"y"^6)^(2/3)`
Evaluate:
`("a"^(2"n"+1)xx"a"^((2"n"+1)(2"n"-1)))/("a"^("n"(4"n"-1))xx("a"^2)^(2"n"+3)`
Simplify:
`("a"^(2"n"+3)."a"^((2"n"+1)("n"+2)))/(("a"^3)^(2"n"+1)."a"^("n"(2"n"+1)`