Advertisements
Advertisements
प्रश्न
Find the value of n, when:
`("a"^(2"n"-3)xx("a"^2)^("n"+1))/(("a"^4)^-3)=("a"^3)^3÷("a"^6)^-3`
उत्तर
`("a"^(2"n"-3)xx("a"^2)^("n"+1))/(("a"^4)^-3)=("a"^3)^3÷("a"^6)^-3`
`("a"^(2"n"-3)xxa^(2"n"+2))/"a"^-12="a"^9÷"a"^-18`
`("a"^(2"n"-3)xx2^(2"n"+2))/"a"^-12="a"^9/"a"^-18`
`"a"^(2"n"-3+2"n"+2-(-12)="a"^9-(-18))`
`"a"^(4"n"+11)="a"^27`
Comparing both sides, we get
`4"n"+11=27`
`⇒4"n"=27-11`
`⇒"n"=16/4=4`
APPEARS IN
संबंधित प्रश्न
Compute:
`(2/3)^(-4)xx(27/8)^-2`
Compute:
`(625)^(-3/4)`
Compute:
`(125)^(-2/3)÷(8)^(2/3)`
Compute:
`(-3)^4-(root(4)(3))^0xx(-2)^5÷(64)^(2/3)`
Evaluate:
`(4"x")^0`
Evaluate:
`[(10^3)^0]^5`
Evaluate:
`(7"x"^0)^2`
Simplify:
`(27"x"^-3"y"^6)^(2/3)`
Simplify and express as positive indice:
(xy)(m-n).(yz)(n-l).(zx)(l-m)
Prove that:
`((x^a)/x^b)^(1/(ab))((x^b)/x^c)^(1/(bc))(x^c/x^a)^(1/(ca))=1`