Advertisements
Advertisements
प्रश्न
Find the value of n, when:
`12^-5xx12^(2"n"+1)=12^13÷12^7`
बेरीज
उत्तर
`12^-5xx12^(2"n"+1)=12^13÷12^7`
`12^(-5+2"n"+1)=12^13/12^7`
`12^(2"n"-4)=12^(13-7)`
`12^(2"n"-4)=12^6`
Comparing both sides,we get
`2"n"-4=6`
`⇒2"n"=6+4`
`⇒2"n"=10`
`⇒"n"=5`
shaalaa.com
More About Exponents
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Compute:
`1^8xx3^0xx5^3xx2^2`
Compute:
`(2^-9÷2^-11)^3`
Compute:
`9^0xx4^-1÷2^-4`
Evaluate:
`8^0+4^0+2^0`
Evaluate:
`[(10^3)^0]^5`
Evaluate:
`9^0+9^-1-9^-2+9^(1/2)-9^(-1/2)`
Simplify:
`("a"^5"b"^2)/("a"^2"b"^-3`
Simplify:
`(125"x"^-3)^(1/3)`
Simplify:
`(-2"x"^(2/3)"y"^(-3/2))^6`
Prove that:
`1/(1+"x"^("a"-"b"))+1/(1+"x"^("b"-"a"))=1`