Advertisements
Advertisements
प्रश्न
Find the value of n, when:
`12^-5xx12^(2"n"+1)=12^13÷12^7`
योग
उत्तर
`12^-5xx12^(2"n"+1)=12^13÷12^7`
`12^(-5+2"n"+1)=12^13/12^7`
`12^(2"n"-4)=12^(13-7)`
`12^(2"n"-4)=12^6`
Comparing both sides,we get
`2"n"-4=6`
`⇒2"n"=6+4`
`⇒2"n"=10`
`⇒"n"=5`
shaalaa.com
More About Exponents
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Compute:
`1^8xx3^0xx5^3xx2^2`
Compute:
`(-5)^4xx(-5)^6÷(-5)^9`
Simplify:
`(2^-3-2^-4)(2^-3+2^-4)`
Evaluate:
`[(10^3)^0]^5`
Simplify:
`("a"^5"b"^2)/("a"^2"b"^-3`
Simplify:
`5"z"^16÷15"z"^-11`
Simplify:
`(125"x"^-3)^(1/3)`
Simplify and express as positive indice:
(xy)(m-n).(yz)(n-l).(zx)(l-m)
Find the value of n, when:
`("a"^(2"n"-3)xx("a"^2)^("n"+1))/(("a"^4)^-3)=("a"^3)^3÷("a"^6)^-3`
Simplify:
`("x"^(2"n"+7).("x"^2)^(3"n"+2))/"x"^(4(2"n"+3)`