Advertisements
Advertisements
Question
Find the value of n, when:
`12^-5xx12^(2"n"+1)=12^13÷12^7`
Sum
Solution
`12^-5xx12^(2"n"+1)=12^13÷12^7`
`12^(-5+2"n"+1)=12^13/12^7`
`12^(2"n"-4)=12^(13-7)`
`12^(2"n"-4)=12^6`
Comparing both sides,we get
`2"n"-4=6`
`⇒2"n"=6+4`
`⇒2"n"=10`
`⇒"n"=5`
shaalaa.com
More About Exponents
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Compute:
`(56/28)^0÷(2/5)^3xx16/25`
Compute:
`(-1/3)^4÷(-1/3)^8xx(-1/3)^5`
Simplify:
`8^(4/3)+25^(3/2)-(1/27)^(-2/3)`
Evaluate:
`8^0+4^0+2^0`
Evaluate:
`(8+4+2)^0`
Evaluate:
`(4"x")^0`
Evaluate:
`9^0+9^-1-9^-2+9^(1/2)-9^(-1/2)`
Simplify:
`("a"^5"b"^2)/("a"^2"b"^-3`
Show that:
`(("x"^"a")/"x"^(-"b"))^("a"-"b").(("x"^"b")/"x"^(-"c"))^("b"-"c").(("x"^"c")/("x"^(-"a")))^("c"-"a")=1`
Prove that:
`("m"+"n")^-1("m"^-1+"n"^-1)=("m""n")^-1`