Advertisements
Advertisements
Question
Prove that:
`("m"+"n")^-1("m"^-1+"n"^-1)=("m""n")^-1`
Sum
Solution
`"L"."H"."S". ("m"+"n")^-1("m"^-1+"n"^-1)`
`=1/("m"+"n")(1/"m"+1/"n")=1/("m"+"n").("n"+"m")/("m""n")=1/("m""n"`
`=("m""n")^-1`
`=R.H.S.`
Hence Proved.
shaalaa.com
More About Exponents
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Compute:
`(2/3)^(-4)xx(27/8)^-2`
Compute:
`(56/28)^0÷(2/5)^3xx16/25`
Compute:
`(12)^-2xx3^3`
Compute:
`(625)^(-3/4)`
Compute:
`(-3)^4-(root(4)(3))^0xx(-2)^5÷(64)^(2/3)`
Evaluate:
`8^0+4^0+2^0`
Simplify:
`"x"^10"y"^6÷"x"^3"y"^-2`
Show that:
`(("x"^"a")/"x"^(-"b"))^("a"-"b").(("x"^"b")/"x"^(-"c"))^("b"-"c").(("x"^"c")/("x"^(-"a")))^("c"-"a")=1`
Find the value of n, when:
`12^-5xx12^(2"n"+1)=12^13÷12^7`
Simplify:
`("x"^(2"n"+7).("x"^2)^(3"n"+2))/"x"^(4(2"n"+3)`