Advertisements
Advertisements
प्रश्न
Prove that:
`("m"+"n")^-1("m"^-1+"n"^-1)=("m""n")^-1`
उत्तर
`"L"."H"."S". ("m"+"n")^-1("m"^-1+"n"^-1)`
`=1/("m"+"n")(1/"m"+1/"n")=1/("m"+"n").("n"+"m")/("m""n")=1/("m""n"`
`=("m""n")^-1`
`=R.H.S.`
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Compute:
`(56/28)^0÷(2/5)^3xx16/25`
Compute:
`(625)^(-3/4)`
Compute:
`(-3)^4-(root(4)(3))^0xx(-2)^5÷(64)^(2/3)`
Evaluate:
`(8+4+2)^0`
Simplify:
`(-2"x"^(2/3)"y"^(-3/2))^6`
Simplify and express as positive indice:
`("a"^(-2)"b")^(1/2)xx("a""b"^-3)^(1/3)`
Simplify and express as positive indice:
(xy)(m-n).(yz)(n-l).(zx)(l-m)
Show that:
`(("x"^"a")/"x"^(-"b"))^("a"-"b").(("x"^"b")/"x"^(-"c"))^("b"-"c").(("x"^"c")/("x"^(-"a")))^("c"-"a")=1`
Find the value of n, when:
`12^-5xx12^(2"n"+1)=12^13÷12^7`
Find the value of n, when:
`("a"^(2"n"-3)xx("a"^2)^("n"+1))/(("a"^4)^-3)=("a"^3)^3÷("a"^6)^-3`