Advertisements
Advertisements
प्रश्न
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
उत्तर
cos x(1 + cos y) dx = sin y(1 + sin x) dy
`cosx/((1 + sin x)) "d"x = siny/((1 + cos y)) "d"y`
Integrating on both sides
`int cosx/((1 + sin x)) "d"x = int siny/((1 + cos y)) "d"y`
`int cosx/((1 + sin x)) "d"x = - int (-siny)/((1 + cos y)) "d"y`
`log (1 + sin x) = - log (1 + cos y) + log "c"`
`log(1 + sin x) = log ("c"/((1 + cos y)))`
`(1 + sin x) = "c"/((1 + cos y))`
⇒ (1 + sin x)(1 + cos y) = c
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Choose the correct alternative:
The solution of `("d"y)/("d"x) + "p"(x)y = 0` is
Solve: `y(1 - x) - x ("d"y)/("d"x)` = 0
Solve: ydx – xdy = 0 dy
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) = x + y`
Solve the following homogeneous differential equation:
An electric manufacturing company makes small household switches. The company estimates the marginal revenue function for these switches to be (x2 + y2) dy = xy dx where x represents the number of units (in thousands). What is the total revenue function?
Solve the following:
`("d"y)/("d"x) - y/x = x`
Solve the following:
`("d"y)/("d"x) + y/x = x"e"^x`
Choose the correct alternative:
The differential equation of y = mx + c is (m and c are arbitrary constants)
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (f(y/x))/(f"'"(y/x))` is